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Abstract
The J -matrix method of scattering is used to obtain analytic expressions for the
phase shift of two classes of relativistic exponential-type separable potentials
whose radial component is of the general form rν−1e−λr/2 or r2νe−λ2r2/2, where
λ is a range parameter and ν = 0, 1, or 2. The rank of these separable potentials
is ν + 1. The nonrelativistic limit is obtained and shown to be identical to the
nonrelativistic phase shift. An exact numerical evaluation for higher-order
potentials (ν � 3) can also be obtained in a simple way as illustrated for the
case ν = 3.

PACS numbers: 03.65.Fd, 11.80.-m

1. Preliminaries

Separable potentials are the simplest nontrivial realization of two-point nonlocal potentials that
are used to model particle interactions or to implement schemes and methods being introduced
for toy models. These potentials form the kernel of an integral operator which couples only
very few of the lowest states of the system. In its simplest form (one-term separable potential),
coupling affects only the lowest state, and, thus, the matrix representation, Vnm, of the potential
is zero except forV00. Normally in such models, exact solutions for the bound and/or scattering
states are obtained provided that theH0-problem is analytically soluble, whereH0 is the refer-
ence Hamiltonian in the absence of the separable potential. Fewer exactly soluble models exist
for higher-rank M-term separable potentials, where M > 2. Furthermore, even fewer exact
solutions exist in the relativistic as compared to the nonrelativistic regime. In the published lit-
erature, separable potentials are used more widely in the areas of nuclear and condensed matter
than in other fields of physics. The number of publications dealing with the application of sep-
arable potentials to the solution of various problems in physics is remarkable. As examples, we
select, from the result of a literature survey of the tens of papers dealing with this subject annu-
ally, articles published during the last five years that are of relevance to our present work: [1–23].
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In this paper, we consider relativistic exponential-type separable potentials with spherical
symmetry and take the Dirac Hamiltonian as the reference Hamiltonian. We investigate
two classes of these potentials whose radial component is of the general form rν−1e−λr/2

or r2νe−λ2r2/2, where λ is a range parameter and ν = 0, 1, 2, and 3. It turns out that these
potentials are (ν+1)-term separable; that is, their matrix representation is of dimension (ν+1).
The tools of the relativistic J -matrix method for scattering [24] are used to obtain analytic
expressions for the phase shift for ν = 0, 1, and 2. For higher-order potentials (ν � 3),
we find that it is sufficient and more practical to calculate the exact phase shift numerically
using the relativistic J -matrix method with a function-space dimension N � ν + 1. The
resulting structure of the phase shift as a function of energy turns out to be very rich and highly
interesting, as demonstrated by the graphical results in the examples given.

In atomic units (m = e = h̄ = 1) and taking the speed of light c = α−1, the Dirac
equation for a nonlocal potential V (�r, �r ′) reads(

1 −iα�σ · �∇
−iα�σ · �∇ −1

)
�(�r) + α2

∫
V (�r, �r ′)�(�r ′) d3�r ′ = ε�(�r) (1.1)

where α is the fine-structure constant, �σ are the three 2 × 2 Pauli spin matrices, and ε is the
relativistic energy. For spherically symmetric potentials, the wavefunction�(�r) is an element
of an L2-space spanned by the four-component spinor basis [25]:

ψlmn (�r) =

 i

φn(r)

r
χlm

θn(r)

r
�σ · r̂χlm


 n, l = 0, 1, 2, . . .

m = −l ± 1/2,−l + 1 ± 1/2, . . . , l ± 1/2
(1.2)

where χlm is the angular spinor component and {φn, θn} are the radial spinor components.
Therefore, in this basis, the Dirac equation (1.1) can be written as(

1 − ε α (κ/r − d/dr)
α (κ/r + d/dr) −1 − ε

)(∑
n
hn(ε)φn(r)∑
n
hn(ε)θn(r)

)
+ α2

∫
V (�r, �r ′)�(�r ′) d3�r ′ = 0

(1.3)

where κ is the spin–orbit coupling parameter defined by κ = ±(j+1/2) for l = j±1/2, j is the
total angular momentum quantum number, and {hn(ε)}∞n=0 is the set of expansion coefficients
of the spinor wavefunction. For a spherically symmetric relativistic separable potential, the
kernel V (�r, �r ′), can generally be written as

V (�r, �r ′) =
(
V+U(r)U(r

′) V0U(r)W(r
′)

V0W(r)U(r
′) V−W(r)W(r ′)

)
(1.4)

where U(r) and W(r) are real radial potential functions; V± and V0 are real constant
coupling parameters. It is clear that the representation (1.4) satisfies unitarity; that is,
V (�r, �r ′)† = V (�r ′, �r). The potential matrix elements are

V l,l
′

nm = α2
∫ ∫

ψln(�r)†V (�r, �r ′)ψl
′
m(�r ′) d3�r d3�r ′. (1.5)

This integral is tractable only when l = 0 (i.e., κ = 0). Therefore, our problem is constrained
to the s-wave separable potentials. The angular contribution to the integral is a factor of 4π .
Hence,

Vnm = 4πα2[V+InIm + V−JnJm + V0(InJm + ImJn)] (1.6)

where we have defined the following integrals:

In =
∫
rU(r)φn(r) dr and Jn =

∫
rW(r)θn(r) dr. (1.7)
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In section 2, an analytic expression for the phase shift associated with the s-wave relativistic
separable potential (1.4) withU(r) = W(r) = rν−1e−λr/2 for ν = 0, 1, 2 is obtained using the
J -matrix formalism, while in section 3, the same treatment is repeated for the s-wave relativistic
separable potential withU(r) = λrW(r) = r2νe−λ2r2/2 for ν = 0, 1, 2. In section 4, we obtain
graphical results for the phase-shift angle as a function of energy for a given choice of range- and
spin-dependent coupling parameters. An overview of the essential formalism of the relativistic
J -matrix method needed for the present work is given in appendix A. Readers who are not
familiar with the J -matrix method of scattering and are interested in more than the overview
given in the appendix could consult [26] and references therein. The relativistic extension of
the J -matrix theory can be found in [24, 27, 28].

2. The separable potential rν−1e−λr/2

The natural basis for this problem is the relativistic two-component Laguerre functions
given by equation (A.7) in appendix A. For κ = 0, the separable potential (1.4) with
U(r) = W(r) = rν−1e−λr/2 will result in a finite number of terms for both integrals in (1.7)
simultaneously:

In = 1

λν+1/2
√
n + 1

∫
xν+1e−xL1

n(x) dx

Jn =
√
n + 1

2

λC

λν+1/2

∫
xνe−x[L0

n(x) + L0
n+1(x)] dx

(2.1)

where x = λr .
In the case of a Yukawa-type separable potential (that is, ν = 0), the first integral in (2.1)

reads

In = 1√
λ(n + 1)

∫
xe−xL1

n(x)L
1
0(x) dx (2.2)

since Lµ0 (x) = 1. Using the normalization property of the Laguerre polynomials [29], we
obtain

In = δn0√
λ
. (2.3)

Similarly, the second integral gives

Jn = C

2

√
λδn0. (2.4)

Therefore,

Vnm = 4π
α2

λ
[V+ + (λC/2)2V− + λCV0]δn0δm0. (2.5)

Hence, the potential matrix is zero except for V00. The scattering phase shift associated with
this relativistic separable potential can be obtained analytically using the J -matrix method.
For our present problem, the reference Hamiltonian is the sum of the kinetic energy term (the
free Dirac Hamiltonian given by (A.6)) and this Yukawa-type separable potential r−1e−λr/2.
This means that we need to find an analytic solution to the newly emerging recursion relation
and obtain the sine-like, hn = ŝn, and cosine-like, hn = ĉn, expansion coefficients of the
regularized wavefunction necessary for J -matrix calculations. Then we proceed as follows.

The matrix representation of the new reference Hamiltonian Ĥ0 is the sum of that of the
free Dirac Hamiltonian H0, given by (A.9) with κ = 0, and the 1 × 1 matrix representation
of the one-term separable potential V in (2.5). Let Inm = (H0)nm − ε)nm, where ) is given



11276 A D Alhaidari

by (A.10) with κ = 0, be the J -matrix for the original Dirac problem without the Yukawa
separable potential and let hn stand for either ŝn or ĉn of the current problem. Then, the
three-term symmetric recursion relation

In,n−1hn−1 + In,nhn + In,n+1hn+1 = 0 n � 1 (2.6)

is the same as that of the original problem, which is given by (A.2), except for the initial
conditions which now read

I00ŝ0 + I01ŝ1 = −V00ŝ0

I00ĉ0 + I01ĉ1 = −V00ĉ0 − α2w/2ŝ0
(2.7)

where w(ε) is the Wronskian of the regular and irregular solutions of the free Dirac problem.
Now, we seek a linear unitary transformation that mixes the original sine-like and cosine-like
solutions, {sn, cn}, as follows:(

ŝn
ĉn

)
=
(
γ ρ

−ρ γ

)(
sn
cn

)
n � 0 (2.8)

such that we recover the original initial conditions (A.3) when V = 0. γ and ρ are
energy dependent and parametrized by V00. They are, respectively, the cosine and sine of
an angle, say τ . This angle can be thought of as the phase shift from the original solutions,
sn(ε) and cn(ε), of the unperturbed problem due to this Yukawa-type separable potential. That
is, the phase shift of the current problem is obtained, simply, as the rotation angle of the
kinematical coefficients of the original relativistic J -matrix problem. We can obtain a more
compact and transparent solution if we write the problem in terms of this angle, τ , and the
complex coefficients defined by

g±
n (ε) = cn(ε)± isn(ε). (2.9)

In this notation, the transformation (2.8) is equivalent to

ĝ±
n = e±iτ g±

n n � 0. (2.10)

The J -matrix kinematical coefficients Tn(ε) and R±
n (ε) defined in (A.4) transform, according

to (2.10), simply as follows:

T̂n = e−2iτ Tn R̂±
n+1 = R±

n+1 n � 0. (2.11)

Moreover, the set of initial conditions in (A.3) are written in terms of the complex coefficients
as

I00g
+
0 + I01g

+
1 = − iα2w/g+

0

1 − T0
(2.12)

while the new initial conditions in (2.7) take the following form:

I00ĝ
+
0 + I01ĝ

+
1 = −V00ĝ

+
0 − iα2w/ĝ+

0

1 − T̂0

. (2.13)

Substituting from (2.10) into (2.13) and using (2.12) we obtain

e2iτ = T0 + (1 − T0)

[
1 +

V00

I00 + I01R
+
1

]−1

. (2.14)

This expression for the phase-shift angle τ can be evaluated using T0(ε) and R±
1 (ε) given by

the set of equations (A.11)–(A.13) in appendix A. The nonrelativistic limit of the phase shift
in (2.14) is obtained by using (A.14). After some manipulations, we obtain

tan(τ ) = ± k
λ



[

1

4
−
(
k

λ

)2
]

+
λ3

8πV+

[
1

4
+

(
k

λ

)2
]2



−1

. (2.15)
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This is the well-known nonrelativistic result for this separable potential in the absence of
Coulomb interaction [30].

For a Yamaguchi-type separable potential (that is, ν = 1) the integrals in (2.1) give
the following 2 × 2 symmetric potential matrix after using the recursion and normalization
properties of the Laguerre polynomials [29]:

V00 = 16π
α2

λ3
V+

V11 = 8π
α2

λ3
[V+ + (λC/2)2V− + λCV0]

V01 = V10 = −8
√

2π
α2

λ3
[V+ + (λC/2)V0].

(2.16)

Again, an analytic solution of this problem can also be obtained in the context of the J -matrix
formalism for a reference Hamiltonian which is the sum of the s-wave kinetic energy part, H0

in (A.9) with κ = 0, and this 2 × 2 matrix representation of the Yamaguchi-type separable
potential e−λr/2. Therefore, we proceed as in the previous case and as follows.

The homogeneous recursion (2.6) in this case is valid only for n � 2, while the initial
relations that replace (2.7), or equivalently (2.13), read(

I00 I01 0
I10 I11 I12

)( ĝ+
0
ĝ+

1
ĝ+

2

)
= −

(
V00 V01

V10 V11

)(
ĝ+

0
ĝ+

1

)
− iα2w/ĝ+

0

1 − T̂0

(
1
0

)
. (2.17)

In this case a transformation similar to (2.10) will not be sufficient to recover the original initial
condition (2.12); however, the following split transformation will:

ĝ±
0 = ηe±iξ g±

0

ĝ±
n = e±iτ g±

n n � 1
(2.18)

where η and ξ are real, and η > 0. Again the angle τ is the phase shift from the original sine-
and cosine-like solutions of the unperturbed problem due to this Yamaguchi-type separable
potential. The details of the calculation are left to appendix B with the following end result:

e2iτ = T0e−2iζ + (1 − T0)(I01 + V01)

(
I00 + I01R

+
1

I01 − V11R
+
1

)

×
[
(I01 − V11R

+
1 )

I00 + V00

I01 + V01
+ R+

1 (I01 + V01)

]−1

(2.19)

where the angle ζ is given by equation (B.9) in appendix B, while T0 and R±
1 are again given

by the equation set (A.11)–(A.13). The nonrelativistic limit of the phase shift in (2.19) is also
obtained by using (A.14).

A similar treatment for the case ν = 2 gives the following expression for the scattering
matrix:

e2iτ = T0e−2iξ +
1 − T0

R+
15

(I00 + R+
1 I01)

{
R+

15(I00 + V00)

+R+
1

[
I01 + V01

I12 + V12
(I12 − R+

2V22 − V025) + R+
2V02

]}−1

(2.20)

where Vnm is evaluated using equation (1.6) with

In = 6

λ5/2

(
δn2√

3
−

√
2δn1 + δn0

)

Jn = λC

λ5/2

(√
3δn2 −

√
2δn1 − δn0

) (2.21)
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and

ξ = arg(R+
15) (2.22)

where

5(ε, V ) =
(I01/R

+
1 ) + I11 − R+

2V12 +
I11 + V11

I12 + V12
(−I12 + R+

2V22)

I01 + V01 − V02
I11 + V11

I12 + V12

. (2.23)

Note that R+
2 can be calculated recursively using the recursion relation as give by (A.5);

that is,

R±
2 = − 1

I12

(
I11 +

I01

R±
1

)
. (2.24)

Using the recursion and normalization properties of the Laguerre polynomials [29], one can
show that, in the general case, the rank of this separable potential is ν + 1. That is, the matrix
representation of the separable potential in the relativistic Laguerre basis is of dimension
ν + 1. For ν � 3, the analytic evaluation is too lengthy; however, for numerical J -matrix
computations, only the matrix representation of the potential is needed. It is our observation
that in all the cases above, the accuracy of the numerical J -matrix calculation, when compared
with the analytic results, is limited only by the computing capacity. Therefore, it is sufficient
and more practical to calculate the exact phase shift for higher-order potentials (ν � 3)
numerically using the relativistic J -matrix method with a function-space dimensionN � ν+1.
In such a calculation we only need to evaluate the integrals in equation (2.1). For ν = 3, the
evaluation of these integrals gives

In = −12

λ7/2

(
δn3 − 2

√
3δn2 + 3

√
2δn1 − 2δn0

)
Jn = −6λC

λ7/2

(
δn3 −

√
3δn2 + δn0

)
.

(2.25)

Inserting these expressions in equation (1.6) gives the elements of the exact 4 × 4 potential
matrix. These will be added to the N × N tridiagonal matrix representation of the s-wave
reference Hamiltonian (given by (A.9) with κ = 0) resulting in the N ×N total Hamiltonian.
This is then used in the standard relativistic J -matrix calculation of the finite Green function
leading to the phase shift [24, 28].

The nonrelativistic phase shift is obtained by the standard nonrelativistic J -matrix
method [26] with a short-range potential whose matrix elements are Vnm = 4πV+InIm, where
In is as given in (2.25) above.

Higher-order potentials can also be handled numerically in the same way.

3. The separable potential r2νe−λ2r2/2

In this section, we briefly repeat the development that was carried out above for this new
Gaussian-type separable potential—however, in a differentL2-basis. The natural basis for this
problem is the relativistic two-component oscillator-type basis given by equation (A.15) in
appendix A. For κ = 0, the separable potential (1.4) with U(r) = W(r) = r2νe−λ2r2/2 will
not result in a finite number of terms for both integrals in (1.7) simultaneously. However, the
following choice will:

U(r) = r2νe−λ2r2/2

W(r) = 1

λr
r2νe−λ2r2/2.

(3.1)
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It gives

In = 1/
√

2

λ2ν+3/2

√
6(n + 1)

6(n + 3/2)

∫
xν+1/2e−xL1/2

n (x) dx

Jn = λC/
√

2

λ2ν+3/2

√
6(n + 1)

6(n + 3/2)

∫
xν−1/2e−x[(n + 1/2)L−1/2

n (x) + (n + 1)L−1/2
n+1 (x)] dx

(3.2)

where x = λ2r2.
In the case of Gaussian potentials (that is, ν = 0), the integrals in (3.2) give the following

potential matrix:

Vnm = π
√
π
α2

λ3
[V+ + (λC)2V− + 2λCV0]δn0δm0. (3.3)

To find the analytic expression for the phase shift associated with this separable potential then,
we proceed as in section 2 and as follows.

The matrix representation of the new reference Hamiltonian Ĥ0 is the sum of that of H0,
given by (A.17) with κ = 0, and the 1 × 1 potential matrix in (3.3). The same computational
steps as in section 2 lead to the same expression (2.14) for the phase shift—however, in terms of
V00 given by equation (3.3) and the coefficients T0 and R±

1 which are obtained by substituting
{s0, s1, c0, c1} given by (A.19) into (A.4). The nonrelativistic limit of the phase shift is also
obtained by using (A.14). This leads to the same formula, equation (2.14), with the coefficients
T0 and R±

1 being obtained again using (A.19) except that we take k = √
2E.

For the case ν = 1, the evaluation of the integral in (3.2) gives the 2 × 2 symmetric
potential matrix whose elements are

V00 = 9

4
π

√
π
α2

λ7
[V+ + (λC/3)2V− − 2(λC/3)V0]

V11 = 3

2
π

√
π
α2

λ7
[V+ + (λC)2V− + 2(λC)V0]

V01 = V10 = −3π

2

√
3π

2

α2

λ7

[
V+ − 1

3
(λC)2V− +

2

3
λCV0

]
.

(3.4)

On the other hand, for ν = 2, we obtain a 3 × 3 potential matrix using

In = π1/4

2λ11/2

(√
3 × 5

2
δn2 − 5

√
3

2
δn1 +

3 × 5

4
δn0

)

Jn = λCπ1/4

2λ11/2

(√
3 × 5

2
δn2 −

√
3

2
δn1 − 3 × 3

4
δn0

)
.

(3.5)

The resulting expression for the phase-shift angle τ in these two cases is exactly that given by
equation (2.19) for ν = 1 and by equation (2.20) for ν = 2, except that we should use the
following parameters instead:

(1) The potential matrix elements in (3.4) for ν = 1 or those obtained using (3.5) in (1.6) for
ν = 2.

(2) The J -matrix elements Inm given by those ofH0 in (A.17), and those of) in (A.18), both
with κ = 0.

(3) T0(ε) and R+
1 (ε) obtained by substituting the relativistic sine- and cosine-like coefficients

given by (A.19) into (A.4).
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The nonrelativistic limit of this phase shift is obtained similarly by using (A.14).
Again, for the general case these potentials are of rank ν + 1. It is sufficient and more

practical to calculate the exact phase shift for higher-order potentials (ν � 3) numerically
using the relativistic J -matrix method with a function space whose dimension is N � ν + 1.
In such calculation we only need to evaluate the integrals in (3.2). For ν = 3 we obtain

In = 3π1/4

4λ15/2

(
−√

7 × 5δn3 + 3

√
3 × 5

2
δn2 − 5 × 7

2

√
3

2
δn1 +

5 × 13

4
δn0

)

Jn = 3λCπ1/4

4λ15/2

(
−√

7 × 5δn3 + 3

√
3 × 5

2
δn2 +

5

2

√
3

2
δn1 − 5 × 5

4
δn0

)
.

(3.6)

Inserting these expressions in equation (1.6) gives the exact elements of the 4 × 4 potential
matrix. These will be added to the N × N tridiagonal matrix representation of the s-wave
reference Hamiltonian (given by (A.17) with κ = 0) resulting in theN ×N total Hamiltonian.
This is then used in the standard relativistic J -matrix calculation of the finite Green function
leading to the phase shift.

The nonrelativistic limit is obtained by the standard nonrelativistic J -matrix method with
a short-range potential whose matrix elements are Vnm = 4πV+InIm with In as given in (3.6).

Higher-order potentials can also be handled the same way.

4. Graphical results

The following examples share the same potential parameters:

V+ = 0.5 V− = 0.3 V0 = −0.2. (4.1)

The separable potential in the first four examples is of the form rν−1e−λr/2 with ν = 0, 1, 2,
and 3, respectively. The last four are concerned with the Gaussian-type form r2νe−λ2r2/2 for
ν = 0, 1, 2, and 3, respectively. The results are shown graphically as a plot of the phase-shift
angle, in radians, versus the nonrelativistic energy, in atomic units. The relativistic phase shift
is shown as a solid curve while the nonrelativistic one, for the same example, is shown as a
dotted curve on the same graph. Figure 1 shows the results for the first four examples, while
figure 2 shows those for the last four. The rest of the parameter values are taken as detailed in
the captions of figures 1 and 2.

Note that in examples 4 and 8 (respectively, figures 1(d) and 2(d)) the relativistic as well
as nonrelativistic phase shift are calculated numerically using the J -matrix method while the
rest are obtained analytically.
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Appendix A. Overview of the relativistic J-matrix

The J -matrix method [26] is an algebraic method for quantum scattering whose structure in
function space parallels that of the R-matrix method in configuration space. The perturbing
short-range potential, Ṽ , is in the R-matrix method confined to an ‘R-box’ in configuration
space (i.e. Ṽ (r) = 0 for r � R), while in the J -matrix method it is confined to an ‘N -box’ in
function space. This is the matrix representation Ṽnm = 0 for n,m � N . In the two methods,
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(a)

(b)

(c)

(d )

(a)

(b)

(c)

(d )

Figure 1. The relativistic (nonrelativistic) phase shift,
in radians, shown as solid (dotted) curves, versus the
nonrelativistic energy, in atomic units. The separable
potential is of the type rν−1e−λr/2 with the coupling
parameters in (4.1). The rest of the parameter values
are taken as: (a) ν = 0, λ = 1.0, α = 0.4, C = α/3;
(b) ν = 1, λ = 1.5, α = 0.5, C = α/3; (c) ν = 2,
λ = 2.0, α = 0.5, C = α/3; (d) ν = 3, λ = 2.5,
α = 0.2, C = α/3.

Figure 2. The relativistic (nonrelativistic) phase shift,
in radians, shown as solid (dotted) curves, versus the
nonrelativistic energy, in atomic units. The separable

potential is of the type r2νe−λ2r2/2 with the coupling
parameters in (4.1). The rest of the parameter values
are taken as: (a) ν = 0, λ = 1.0, α = 0.5, C = α/3;
(b) ν = 1, λ = 1.1, α = 0.4, C = α/3; (c) ν = 2,
λ = 1.4, α = 0.3, C = α/4; (d) ν = 3, λ = 1.5,
α = 0.3, C = α/4.

the unperturbed (reference) problem is solved analytically, enabling a scattering calculation to
be made over a continuous range of energy despite the fact that confinement in both methods
produces discrete energy spectra. The basis {ψn}∞n=0 of the function space, in the J -matrix
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method, is chosen such that the matrix representation of the wave operator, I = H0 − ε, is
tridiagonal. H0 is the reference Hamiltonian and ε is the energy. This has no parallel in the
R-matrix method. It restricts the types of L2-basis and limits the reference Hamiltonians to
those with the type of symmetry that admits such tridiagonal representations. Therefore, the
reference wave equation:

I|�〉 = I

(∑
n

dn|ψn〉
)

= 0 (A.1)

gives a symmetric three-term recursion relation for the set of expansion coefficients of the
spinor wavefunction, {dn(ε)}∞n=0. That is,

In,n−1dn−1 + In,ndn + In,n+1dn+1 = 0 n � 1 (A.2)

where Inm is the tridiagonal matrix representation of the wave operator, (H0)nm − ε)nm, and
) is the identity operator (i.e. the basis overlap matrix whose elements are )nm = 〈ψn|ψm〉,
which is also tridiagonal). The solution of the recursion relation (A.2), subject to proper initial
conditions, gives two ‘regularized’ solutions of the relativistic reference wave equation (A.1).
That is, we obtain two sets of expansion coefficients, {dn(ε)} = {sn(ε)} or {cn(ε)}, giving two
wavefunction solutions that are finite at the origin and behave asymptotically as sin(kr) or
cos(kr), respectively, where k is the energy-dependent wavenumber—hence the descriptions
sine-like and cosine-like for the coefficients sn and cn, respectively. The relativistic extension
of the method has been developed for two cases of reference Hamiltonians: the free Dirac
Hamiltonian [24, 27] and the Dirac–Coulomb Hamiltonian [28]. The proper initial relations
that complement (A.2) for the two sets of expansion coefficients are [24, 28]

I00s0 + I01s1 = 0
I00c0 + I01c1 = −α2w/2s0

(A.3)

where w(ε) is the Wronskian of the regular and irregular solutions of the free Dirac problem.
Therefore, for a given H0, basis {ψn}∞n=0, and initial coefficients s0 and c0, the whole set
{sn, cn}∞n=0 will be determined recursively using (A.3) and (A.2). The recursion relation (A.2)
is frequently written in terms of the ‘J -matrix kinematical coefficients’:

Tn ≡ cn − isn
cn + isn

R±
n+1 ≡ cn+1 ± isn+1

cn ± isn
n � 0 (A.4)

as follows:

R±
n+1 = − 1

In,n+1

(
In,n +

In,n−1

R±
n

)
and Tn = Tn−1

R−
n

R+
n

n � 1. (A.5)

It is solved for given initial coefficients T0 and R±
1 .

For the free Dirac Hamiltonian:

H0 =
(

1 α (κ/r − d/dr)
α (κ/r + d/dr) −1

)
(A.6)

the two-component L2-spinor basis, which is relevant to our present treatment, has already
been obtained [24,28]. This basis is either of Laguerre or oscillator type. The upper and lower
radial components of the Laguerre-type spinor basis are written in terms of the generalized
Laguerre polynomials, respectively, as

φn(r) = an(λr)
κ+1e−λr/2L2κ+1

n (λr)

θn(r) = λC

2
an(λr)

κe−λr/2[(2κ + n + 1)L2κ
n (λr) + (n + 1)L2κ

n+1(λr)]
(A.7)



Scattering phase shift for relativistic exponential-type separable potentials 11283

where λ is a scale parameter, C is the small-component strength parameter, Lνn(x) is the
generalized Laguerre polynomial, and the normalization constant is

an =
√

λ6(n + 1)

6(2κ + n + 2)
. (A.8)

The matrix representation of the reference Hamiltonian H0 in this basis is tridiagonal and has
the following elements:

(H0)n,n = 2(κ + n + 1)[1 − (λC/2)2(1 − 2α/C)]

(H0)n,n+1 = −
√
(n + 1)(2κ + n + 2)[1 + (λC/2)2(−2α/C)]

(H0)n,n−1 = −
√
n(2κ + n + 1)[1 + (λC/2)2(1 − 2α/C)].

(A.9)

The identity operator ) is also tridiagonal:

)n,n = 2(κ + n + 1)[1 + (λC/2)2]

)n,n+1 = −
√
(n + 1)(2κ + n + 2)[1 − (λC/2)2]

)n,n−1 = −
√
n(2κ + n + 1)[1 − (λC/2)2].

(A.10)

The initial J -matrix kinematical coefficients in this basis for the case where κ = 0, which is
relevant to our work here, are [24, 26]

T0 = e2iω R±
1 = 1√

2
e∓iω (A.11)

where

cos(ω) = [k(ε)/λ]2 − 1/4

[k(ε)/λ]2 + 1/4
(A.12)

and

k(ε) =
√

− 1

C2

ε − 1

ε − 1 + 2(1 − α/C)
. (A.13)

The nonrelativistic limit is obtained [24, 28] by taking

α → 0 C = α/2. (A.14)

In the oscillator-type spinor basis, however, the upper and lower radial components are written,
respectively, as

φn(r) = an(λr)
κ+1e−λ2r2/2Lκ+1/2

n (λ2r2)

θn(r) = λCan(λr)
κe−λ2r2/2[(n + κ + 1/2)Lκ−1/2

n (λ2r2) + (n + 1)Lκ−1/2
n+1 (λ2r2)]

(A.15)

where the normalization constant, on the other hand, is

an =
√

2λ6(n + 1)

6(n + κ + 3/2)
. (A.16)

The matrix representation of the reference HamiltonianH0 in this basis is also tridiagonal with
the following elements:

(H0)nn = 1 + λ2C2(−1 + 2α/C)(2n + κ + 3/2)

(H0)n,n−1 = λ2C2(−1 + 2α/C)
√
n(n + κ + 1/2)

(H0)n,n+1 = λ2C2(−1 + 2α/C)
√
(n + 1)(n + κ + 3/2).

(A.17)
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The tridiagonal overlap matrix has the following elements:

)nn = 1 + λ2C2(2n + κ + 3/2)

)n,n−1 = λ2C2
√
n(n + κ + 1/2)

)n,n+1 = λ2C2
√
(n + 1)(n + κ + 3/2).

(A.18)

The initial sine-like and cosine-like coefficients in this basis for the case κ = 0 are [24, 26]:

s0(ε)

s1(ε)

}
= π1/4

√
2

λ

k

λ
e−k2/2λ2




1
k2/λ2 − 3/2√

3

(A.19a)

c0(ε)

c1(ε)

}
= π−1/4

√
2

λ
e−k2/2λ2




1F1(−1/2; 1/2; k2/λ2)

− 1F1(−3/2; 1/2; k2/λ2)√
3

(A.19b)

where 1F1(a; b; z) is the confluent hypergeometric function and k(ε) is as defined in (A.13).
The nonrelativistic limit is also obtained by using (A.14).

Appendix B. Calculating the phase shift for the case ν = 1

The transformation (2.18) changes the initial conditions in (2.17) to(
I00 I01 0
I10 I11 I12

)( ηeiξ g+
0

eiτ g+
1

eiτ g+
2

)
= −

(
V00 V01

V10 V11

)(
ηeiξ g+

0
eiτ g+

1

)
− iα2w/ηeiξ g+

0

1 − e−2iξ T0

(
1
0

)
. (B.1)

Using (2.12), we can write

I00ηeiξ g+
0 + I01eiτ g+

1 = (ηeiξ − eiτ )I00g
+
0 + eiτ (I00g

+
0 + I01g

+
1 )

= (ηeiξ − eiτ )I00g
+
0 − iα2weiτ /g+

0

1 − T0
. (B.2)

We can also write

I10ηeiξ g+
0 + eiτ (I11g

+
1 + I12g

+
2 ) = (ηeiξ − eiτ )I10g

+
0 + eiτ (I10g

+
0 + I11g

+
1 + I12g

+
2 )

= (ηeiξ − eiτ )I10g
+
0 = (ηeiξ − eiτ )I01g

+
0 . (B.3)

Using these results, we can write equation (B.1) as

(ηeiξ − eiτ )g+
0

(
I00

I01

)
+

−iα2weiτ /g+
0

1 − T0

(
1
0

)

= −
(
V00 V01

V10 V11

)(
ηeiξ g+

0
eiτ g+

1

)
− iα2w/ηeiξ g+

0

1 − e−2iξ T0

(
1
0

)
. (B.4)

The second raw yields the following equation:

ηeiξ g+
0 (I01 + V01) = eiτ (I01g

+
0 − V11g

+
1 ) = eiτ g+

0 (I01 − V11R̂
+
1 ) (B.5)

giving

ηeiξ = eiτ I01 − V11R
+
1

I01 + V01
. (B.6)

Therefore, we conclude that

η =
∣∣∣∣I01 − V11R

+
1

I01 + V01

∣∣∣∣ (B.7)
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and

eiξ = eiτ eiζ (B.8)

where

ζ = arg

(
I01 − V11R

+
1

I01 + V01

)
. (B.9)

The first row of (B.4) gives the following equation:

I00(ηeiζ − 1)− iα2w

(g+
0 )

2

1

1 − T0
= −(V00ηeiζ + V01R

+
1 )− iα2w

ηeiζ (g+
0 )

2

1

e2iτ − e−2iζ T0
. (B.10)

Equation (2.12) also gives

(g+
0 )

2 = −iα2w

1 − T0
(I00 + I01R

+
1 )

−1. (B.11)

Substituting in (B.10), we obtain

I00 + I01R
+
1

e2iτ − T0e−2iζ
= ηeiζ

1 − T0
[ηeiζ (I00 + V00) + R+

1 (I01 + V01)] (B.12)

giving us, finally, the sought-after scattering matrix:

e2iτ = T0e−2iζ + (1 − T0)(I01 + V01)

(
I00 + I01R

+
1

I01 − V11R
+
1

)

×
[
(I01 − V11R

+
1 )

I00 + V00

I01 + V01
+ R+

1 (I01 + V01)

]−1

. (B.13)
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